
Rock Solid.
Lightning Fast.

Secure.
Pick any three

2

Outline
● What is it?
● Business Model
● Applications
● Ecosystem Examples
● Today’s Demos
● More Information

What is it?

4

What is it?
● Hierarchical Key-value

NoSQL
● Daemonless Database

Engine
● Transaction Processing
● Optimistic Concurrency

Control

● Data-centric Architecture
● Wrappers & Plugins
● Mission Critical

Availability
● Platforms
● Octo

5

Core Database Technology
● Mature, high performance, hierarchical key-value,

language-agnostic, NoSQL database whose code base
scales up to mission-critical applications like large real-
time core-banking and electronic health records, and
also scales down to run on platforms like the Raspberry
Pi Zero, as well as everything in-between.

● Rock Solid. Lightning Fast. Secure. Pick any three.
YottaDB is a registered trademark of YottaDB LLC

Hierarchical Key-Value NoSQL

7

Key-Value Tuples
["Capital","Belgium","Brussels"]
["Capital","Thailand","Bangkok"]
["Capital","USA","Washington,DC"]

Key
Value Always sorted – YottaDB

means never having to say
you’re sorting!

8

Schemaless
["Capital","Belgium","Brussels"]
["Capital","Thailand","Bangkok"]
["Capital","USA","Washington,DC"]
["Population","Belgium",13670000]
["Population","Thailand",84140000]
["Population","USA",325737000]

Schema
determined
entirely by
application –
YottaDB assigns
no meaning

Numbers and strings
(blobs) can be freely
intermixed in values
and keys except first

Default order for each key:
• Empty string ("")
• Canonical numbers in numeric order
• Strings (blobs) in lexical order

9

Mixed Key Sizes
["Capital","Belgium","Brussels"]
["Capital","Thailand","Bangkok"]
["Capital","USA","Washington,DC"]
["Population","Belgium",13670000]
["Population","Thailand",84140000]
["Population","USA",325737000]
["Population","USA",17900802,3929326]
["Population","USA",18000804,5308483]
…
["Population","USA",20100401,308745538]

"Population" + 1 more key
means value is latest
population
"Population" + 2 more keys
means value is population on
date represented by last key

yyyymmdd

10

Keys, Array References, (Sub)Trees
Population("Belgium")=13670000
Population("Thailand")=84140000
Population("USA")=325737000
Population("USA",17900802)=3929326
Population("USA",18000804)=5308483
…
Population("USA",20100401)=308745538

First key is
variable name

Other keys are
subscripts

Array references are a familiar
programming paradign

Any JSON structure is representable
as a tree, but not vice versa

11

Sharing and Persistence – Database Access
● Process private, available only for lifetime of process

 Population("Belgium")
 Population("Thailand")
 Population("USA")

● Shared across processes, persistent beyond lifetime
of any process
^Population("Belgium")
^Population("Thailand")
^Population("USA")

Spot the difference?

“global” variables

“local” variables

Daemonless Database Engine

13

Daemonless Database Engine
● Database engine runs in application process
● Processes cooperate to manage database using shared

memory control structures and buffers
● Simple security model

– Complexity is the enemy of security
● No single point of failure
● Eliminates potential performance bottleneck

14

Transaction Processing

16

Balance Transfer Example
● Validate that accounts exist, requested transfer

permitted, sufficient balance, request authenticated
● Subtract $100 from savings account
● Add $100 to checking account
● Compute and debit any applicable service charges
● Log the transaction

17

Balance Transfer Example – Atomic
● Validate that accounts exist, requested transfer

permitted, sufficient balance, request authenticated
● Subtract $100 from savings account
● Add $100 to checking account
● Compute and debit any applicable service charges
● Log the transaction

All of it happens or none of it happens

18

Balance Transfer Example – Consistent
● Validate that accounts exist, requested transfer

permitted, sufficient balance, request authenticated
● Subtract $100 from savings account
● Add $100 to checking account
● Compute and debit any applicable service charges
● Log the transaction

No other process
can see this

intermediate state

19

Balance Transfer Example – Isolated
● Validate that accounts exist, requested transfer

permitted, sufficient balance, request authenticated
● Subtract $100 from savings account
● Add $100 to checking account
● Compute and debit any applicable service charges
● Log the transaction

This logic sees no database state change except its own

20

Balance Transfer Example – Durable
● Validate that accounts exist, requested transfer Validate that accounts exist, requested transfer

permitted, sufficient balance, request authenticatedpermitted, sufficient balance, request authenticated
● Subtract $100 from savings accountSubtract $100 from savings account
● Add $100 to checking accountAdd $100 to checking account
● Compute and debit any applicable service chargesCompute and debit any applicable service charges
● Log the transactionLog the transaction

Permanent once committed

Comm
itted

Optimistic Concurrency Control (OCC)
http://www.eecs.harvard.edu/~htk/

publication/1981-tods-kung-robinson.pdf

22

Transaction Numbers

RecordsHeader

Block transaction number;
Set from file transaction number when block updated

BlocksHeader

File transaction number;
Incremented on each database update

23

OCC Implementation
Start Transaction

Execute transaction logic, noting block
transaction number for each block read

Any block
Transaction

Number
changes?

Commit Transaction
No

Fourth
Attempt?

Yes

 No

Yes Get exclusive
access

24

YottaDB OCC Benefits
● Scalabililty, throughput
● Strong ACID properties

– e.g., even checking for absence of data

25

Data-Centric Architecture

26

Wrappers & Plugins
● Wrappers provide language APIs

– “Native” to each language
– Installed where expected by each implementation

● Plugins extend core functionality (e.g., Octo, AIM)

27

Hello world – C
#include "libyottadb.h"
int main()
{

ydb_buffer_t lang[1], value, varname;
YDB_LITERAL_TO_BUFFER("^hello", &varname);
YDB_LITERAL_TO_BUFFER("C", &lang[0]);
YDB_LITERAL_TO_BUFFER("Hello, world!", &value)
return ydb_set_s(&varname, 1, &lang[0], &value);

}

28

Hello world – Go
package main
import (

"lang.yottadb.com/go/yottadb"
)

func main() {

defer yottadb.Exit()

_ = yottadb.SetValE(yottadb.NOTTP, nil, "สวสัดีชาวโลก",
 "^hello", []string{"Go"})
}

29

Hello world – Lua
local ydb = require('yottadb')

ydb.set('^hello', {'Lua'}, 'Hallo Wereld')

30

Hello world – M
^hello("M")=" "Привіт Світ

31

Hello world – Node.js
const ydb = require('nodem').Ydb();

ydb.open();

ydb.set('^hello', 'Node.js', ' بالعالم ;('مرحبا

ydb.close();

32

Hello world – Perl
#! /usr/bin/perl

use YottaDB qw(:all);

y_set "^hello", "Perl", "Grüẞ Gott Welt";

33

Hello world – Python
import yottadb

if __name__ == "__main__":

 yottadb.set("^hello", ("Python",), value="नमस्ते दुनिया")

34

Hello world – Rust
#![allow(non_snake_case)]

use yottadb::simple_api::Key;
use yottadb::craw::YDB_NOTTP;

fn main() {
 let err_buffer = Vec::new();
 let mut hello = Key::new("^hello", &["Rust"]);
 hello.set_st(YDB_NOTTP, err_buffer,

 "こんにちは世界 ".as_bytes()).unwrap();
}

35

Many Languages, One Database
$ mupip extract -format=zwr -select=hello -stdout
YottaDB MUPIP EXTRACT /usr/local/lib/yottadb/r134/mupip extract -format=zwr -select=hello -stdout
UTF-8
13-JUN-2022 11:38:17 ZWR
^hello("C")="Hello, world!"

^hello("Go")="สวสัดีชาวโลก"
^hello("Lua")="Hallo Wereld"
^hello("M")=" "Привіт Світ
^hello("Node.js")=" بالعالم "مرحبا
^hello("Perl")="Grüẞ Gott Welt"

^hello("Python")="नमस्ते दुनिया"
^hello("Rust")="こんにちは世界 "
%YDB-I-RECORDSTAT, ^hello: Key cnt: 8 max subsc len: 16 max rec len: 37 max node len: 48
%YDB-I-RECORDSTAT, TOTAL: Key cnt: 8 max subsc len: 16 max rec len: 37 max node len: 48
$

Mission Critical Availability
“Five nines”

37

Replication
Primary

Tertiary Tertiary Tertiary Tertiary

Secondary Secondary

...

...

...

Application logic executes on single
primary for maximum transaction
throughput

Up to 16 replicas
each tier

No limit on number of tiers

TCP connection with
no distance limit

38

How Replication Works
● All business logic on single primary instance to

maximize ACID transaction serialization throughput
● Asynchronous Logical replication upto 16 instances

– Minimizes network bandwidth usage
– AP system per CAP Theorem

● Tools to help application restore eventual (CAP)
Consistency while maintaining (ACID) Consistency

39

40

Near-Zero Down Time Switchover
State / Event Instance A Instance B
Normal Operation (e..g, network latency backlog) P:100 S:98
A goes down; B switched to primary role X P:98
B keeps application available; A serviced X P:98→120
A comes up as secondary; rolls back 2 transactions
that are sent to B

S:100→98 P:120→125

A catches up as B operates as primary S:98→130 P:125→130
B reprocesses rolled back transactions S:130→132 P:130→132
Normal operation S:132→140 P:132→140

41

Near-Zero Down Time Rolling Upgrade
State / Event Instance A Instance B
Normal Operation P:100 S:100
A goes down; B switched to primary role X P:100
B keeps application available; A upgraded to A+ X P:100→120
A+ comes up as secondary†; catches up to B S:100→125 P:120→125
Switch A to primary role†; upgrade B P:125 X
A+ keeps application available; B upgraded to B+ P:125→140 X
B+ comes up as secondary; catches up to A+ P:140→150 P:125→150
† Optional replication schema change filters to maintain application
availability even when upgrade involves schema change

Platforms

43

Supported & Supportable Platforms

x86_64 AARCH64
(ARM v8)

ARM-HF
(ARM v7)

Debian ✓ ✓ ✓
Ubuntu ✓
RHEL ✓
SUSE ✓

Supportable Platforms
● Debian derivatives: All CPU

architectures
● RHEL & SUSE derivatives

and other: x86_64
● Build from Source: All CPU

architectures on
contemporary Linux
distributions

44

● Octo is a SQL database engine whose tables are mapped to
YottaDB hierarchical key-value nodes

● Octo runs on YottaDB on 64-bit platforms

Octo is a registered trademark of YottaDB LLC

– SQL too

45

Application
Globals

Schema

Application Application
Rocto
Server

Client
Postgres Wire

Protocol

DDL

Executable
Routines

Octo
SQL EngineOcto

Globals
Triggers

Octo Architecture

Global = Key-value node

46

Octo – Query / Analytics Example

Applications

Executable Routines

DDL

Client

Applications
PostgreSQL
Wire Protocol

Schema
Mapper

Schema Layer

Replication

Triggers

Rocto Server

Octo SQL Engine

Business Model

48

Support Contracts Fund Development
● Software is free

– 100% Free / Open Source Software (FOSS)
– All work at https://gitlab.com/YottaDB

● People are not free
– Support services with SLAs on commercial terms
– Support options and tiers, including 24×7 support

● Worldwide support from USA

https://gitlab.com/YottaDB

Applications

50

Real Time Large Scale Banking

51

Nation-scale Electronic Health Records

52

Major University Library Catalog

53

Industrial Internet of Things

Ecosystem Examples

55

Grafana Dashboard

56

Editing in Visual Studio

57

YottaDB vs RocksDB

https://github.com/RamSailopal/YottaDBvsRocksDB

58

Integration with Business Intelligence

59

jsonHIVES vs. MongoDB* … 1
● Caveats

– jsonHIVES is still in development
– Both were compared “out of the box” with no tuning

or optimization

* courtesy Stefano Lalli

60

jsonHIVES vs. MongoDB … 2
● Identical data

– 100 million identical records
– Each record contains 15 nodes, i.e., 1.5 billion nodes
– Indexes on searched fields

● Docker containers had same number of CPUs & RAM

61

jsonHIVES vs. MongoDB … 3
● Clients

– JsonHIVES – node.js driver
– MongoDB – Robo2T (now called bongo)

● Page fetches with 50 records (750 nodes)

62

Bulk Insert Records

100 K (secs) 1 M (secs) 2 M
0

50

100

150

200

250

300

350

400

18

135

273

27

287

358

Mongo Db jsonHIVES

63

SELECT * WHERE name.last = "RAMOS"

1st page (ms.) Next page (ms.)
0

5

10

15

20

25

30

35

30 30

15

6

Mongo Db - Robo 2T jsonHIVES w cache

64

SELECT * WHERE zip = 90210

1st page (ms.) Next page (ms.)
0

2

4

6

8

10

12

14

16

18

16 16

13

5

Mongo Db - Robo 2T jsonHIVES w cache

65

SELECT * WHERE city = "San Francisco" AND
state = "California"

1st page (ms.) Next page (ms.)
0

50

100

150

200

250

203 203

64

9

Mongo Db - Robo 2T jsonHIVES w cache

66

SELECT * WHERE state LIKE "%as" (/as$/)

1st page (ms.) Next page (ms.)
0

10

20

30

40

50

60

70

80

90

80

9

64

7

Mongo Db - Robo 2T jsonHIVES w cache

Today’s Demos

68

Edge to Cloud – YottaDB Everywhere
🌡

🏃

CO2

Database
Replication Octo

YottaDB

Edge

Cloud
(Simulated)

ODBC/
JDBC NoSQL

Query
Tools

PowerBI,
Excel, R,
LibreOffice,
SquirrelSQL,
etc.

69

VistA Electronic Health Records

VistA
(Simulated
Patients)

ODBC/
JDBC

Octo
VistA
YottaDB

PowerBI,
Excel, R,
LibreOffice,
SquirrelSQL,
etc.

70

GUI – Local or Remote

GUI
YottaDB

VNC (or https)

71

YottaDB Hands On – Ask Us For A Demo!

More Information

73

Links
● https://yottadb.com
● https://gitlab.com/YottaDB
● https://docs.yottadb.com

https://yottadb.com/
https://gitlab.com/YottaDB
https://docs.yottadb.com/

Thank You!
K.S. Bhaskar
bhaskar@yottadb.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

